(1) Write a general equation for the following sequences: (For example, a general equation for the sequence 2, 5, 10, 17, 26, ··· would be $a_n = n^2 + 1$. The equations should be closed form, and they should be single equations. For example “$a_n = \frac{n}{2}$ if n is even, and $a_n = \frac{n+1}{2}$ if n is odd.” wouldn’t be an acceptable answer for part c.)

(a) 3, 5, 7, 9, 11, ···

(b) 1, 5, 7, 17, 31, 65, 127, 257, ··· (Hint, remember that $(-1)^i = 1$ for even i, and $(-1)^i = -1$ for odd i.)

(c) 1, 1, 2, 2, 3, 3, 4, 4, ··· (BONUS points if you can do this without using any “rounding” operators such as floor or ceiling.)

(2) Write a closed form formula for the following summations: (For example, a closed form formula for $\sum_{i=1}^{n} 2i$ would be $n(n + 1)$.)

(a) $\sum_{i=1}^{n} (2i + 3 + 9^i)$

(b) $\sum_{i=1}^{n} ((-1)^i \cdot 9^i)$

(c) $\sum_{i=1}^{n} \sum_{j=1}^{i} ij$

(d) $\sum_{i=1}^{n} \sum_{j=1}^{i} j$ (Hint, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$. Also note that the interior summation is from $j = 1$ to i, not n.)

(3) Give a recursive definition for the following sequence: (Be sure to specify the base case(s).) 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, ···

(4) To be a member of the Sons of the American Revolution, you have to have “at least one ancestor who supported the cause of American Independence during the years 1774-1783”. Let’s suppose that everyone who fits this criterion is a member.
If we define S to be the set of people who “supported the cause of American Independence during the years 1774-1783”, and we define $p(x, y)$ to be “x is a parent of y”, then give a recursive definition of R: the set of members of the Sons of the American Revolution in terms of S and p.

(5) BONUS: The Fibonacci numbers are defined by the equation

$$f_n = f_{n-1} + f_{n-2}$$

where $f_1 = f_2 = 1$.

Prove that, in the limit as $n \to \infty$, $\frac{f_{n+1}}{f_n} = \phi$, where ϕ is the Golden Ratio, given by $\frac{1 + \sqrt{5}}{2}$.

Hint, you may want to prove that the following closed form equation gives f_n:

$$f_n = \frac{(1 + \sqrt{5})^n - (1 - \sqrt{5})^n}{2^n \sqrt{5}}$$

then use this as a lemma in your proof.